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Abstract

We study the design of measurement rules when banks engage in loan sales in
secondary credit markets. Our model incorporates two standard frictions: 1) banks’
monitoring incentives decrease in loan transfers, and 2) banks have private information
about loan quality. Under only the monitoring friction, we find that the optimal mea-
surement rule sets the same measurement precision regardless of bank characteristics,
and strikes a balance between disciplining banks’monitoring efforts vs. facilitating ef-
ficient risk sharing. However, under both frictions, uniform measurement rules are no
longer optimal but induce excessive retention, thus inhibiting effi cient risk sharing. We
show that the optimal measurement rule is contingent on the amount of loan retained.
In particular, measurement occurs if and only if the bank retains a suffi ciently large
proportion of its loan portfolio and whenever measurement occurs, the precision of the
measurement rule increases in the proportion retained. We relate our results to current
regulation for asset transfers.
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1 Introduction

Credit risk transfers are quite pervasive in practice by playing a key economic role for banks’

activities (Pozar et al, 2010). Current accounting standards on asset transfers focus on

control as a key criterion in determining the appropriate accounting treatment of such trans-

fers. (ASC 860, Financial Accounting Standards Board). However, the notion of control is

elusive unless the incentives of transferors are well understood. Indeed, a central motive

for amending the accounting standards on asset transfers to their current form lies in the

concerns that prior accounting standards could distort the incentives of asset transferors.

Robert Herz, the former chairman of the FASB, posited the changes as necessary to “im-

prove existing standards and to address concerns about companies who were stretching the

use of off-balance sheet entities to the detriment of investors.” (FASB, 2009)1 Our goal in

this paper is to ask a more primitive question: given the frictions faced by asset transferors,

how should measurement rules be designed to maximize asset transfer effi ciency?

We model a representative risk-averse bank that chooses how much credit risk to transfer

by selling a proportion of its loan portfolio to a secondary credit market. The bank faces two

standard frictions. First, its incentives to monitor borrowers diminish as a result of selling

its loan portfolio. Second, it has private information about the quality of its loan portfolio

but such information cannot be credibly disclosed to outsiders. Both costly monitoring

and/or higher loan quality stochastically improve the terminal payoffs of the loan portfolio.

Given the monitoring and informational frictions, we investigate how measurement rules

1The amendment includes “requir(ing) more information about transfers of financial assets, including
securitization transactions, and where companies have continuing exposure to the risks related to transferred
financial assets. It eliminates the concept of a ‘qualifying special-purpose entity,’changes the requirements
for derecognizing financial assets, and requires additional disclosures.”
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should be designed to maximize ex ante surplus. We study two types of measurement rules:

a uniform measurement rule that requires the same measurement precision of the loan’s

terminal payoffs regardless of banks’characteristics and a contingent measurement rule that

makes the precision of the measurement rule contingent on banks’observable characteristics.

In practice, a contingent measurement rule may be written on any observable characteristics

of banks’environments. We focus on the level of loan retention as it may serve as an indicator

of control which is a central criterion for measurement under current accounting standards

for asset transfers.

To develop intuition for our main model, we first study a benchmark setting in which

the bank’s monitoring effort is unobservable but its loan quality is publicly known. We show

that while both loan retention and a more precise measurement rule enhance monitoring

incentives, they also impede risk-sharing incentives. In particular, a higher loan retention

and a more precise measurement rule are substitutes in providing monitoring incentives

but are complements in providing risk-sharing incentives. More importantly, we show that

the optimal measurement rule is decoupled from the optimal retention choices so that one

should set a measurement rule that is independent the bank’s optimal retention choices.

Such a uniform measurement rule trades off the benefit of providing effi cient monitoring

incentives vs. facilitating the effi cient transfer of risk. Under such a uniform rule, we show

that measurement is desirable if and only if the effi ciency loss from the reduction in risk-

sharing is not too high and/or the bank’s monitoring incentives are suffi ciently high. The

intuition behind this result is straightforward. While measurement inhibits risk-sharing due

to the well-known Hirschleifer effect (Hirschleifer, 1971), it also provides effi cient monitoring

incentives by increasing the sensitivity of prices to banks’ fundamentals. Consequently,
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measurement is more likely in those environments in which gains from effi cient monitoring

overwhelm losses from ineffi cient risk-sharing.

When loan quality is unobservable, besides its monitoring role, the proportion of loan

retention acquires an additional informational role. The latter role, in turn, induces banks

to increase loan retention in order to credibly communicate their private information to out-

siders. Such excessive retention is ineffi cient and reduces the bank’s surplus. More interest-

ingly, we show that a uniform measurement rule is no longer optimal because a bank’s asset

transfer policy and the measurement rule are now intertwined. In particular, when risk-

sharing considerations are suffi ciently strong, measurement exacerbates the over-retention

problem arising from the adverse selection problem and reduces effi ciency. By tailoring the

measurement rule to the proportion of loan retention, one may improve surplus by influencing

banks’retention policy.

Our main result is that the optimal measurement rule takes the form of a contingent

measurement rule such that measurement precision depends on the bank’s asset transfer

policy. Under the contingent measurement rule, measurement occurs if and only if the bank

retains a suffi ciently large proportion of its loan portfolio and whenever measurement oc-

curs, the precision of the measurement rule increases in the proportion retained. Given that

the bank’s asset transfer policy, in equilibrium, depends on the exogenous parameters of

the bank’s environment, these exogenous parameters also determine when measurement is

more likely to be occur under the optimal rule. We find that measurement should always

occur when monitoring considerations are relatively more important than risk-sharing con-

siderations. But when risk-sharing considerations are suffi ciently important, measurement

is optimal if and only if the loan quality of the bank’s portfolio is suffi ciently high.
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As mentioned above, we do not explicitly model control issues that seem to be the focus of

standard setters. However, our optimal measurement rule—that measurement precision and

asset transfer decisions are inherently linked—provides a useful benchmark for understanding

how the extent of credit risk transfer should be factored into judgements about how such

loans should be measured. In particular, according to the contingent measurement rule, no

measurement is optimal if and only if the bank has transferred most of its loans. To the

extent that a bank that has transferred most of its loans would have relatively little control

over the loans, our contingent measurement rule provides theoretical support for adopting

“control”as the key guiding principle under current asset transfer measurement rules. Fur-

thermore, our comparative statics provide some testable predictions about environments in

which measurement is more likely to be optimal.

Our analyses also have implications for the Dodd-Frank Act that requires securitization

sponsors to retain not less than a 5% share of the aggregate credit risk of the assets they

securitize. Our results suggest that this one-size-fits-all risk retention requirement is subop-

timal: optimal risk retention level should vary according to the riskiness of the underlying

assets and the information environment of banks.

1.1 Related literature

Our model combines important features of the classical models of Leland and Pyle (1977)

and Kanodia and Lee (1998). Similar to Leland and Pyle, we also show that the bank’s

loan transfer decision conveys information about loan quality inducing the bank to transfer

fewer loans. However, our model differs from that of Leland and Pyle in two important
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ways. First, we consider loan retention decision in the presence of both private information

and unobservable monitoring. Second, there are no measurement issues in Leland and Pyle.

In our study, we derive the optimal measurement rule that plays a key role in influencing a

bank’s loan retention policy. As in Kanodia and Lee, a more precise measurement rule in our

environment disciplines ex-ante monitoring incentives but also destroys ex-post risk-sharing.

However, Kanodia and Lee do not investigate asset transfer decisions and therefore cannot

study the interaction between measurement rules and asset transfer policies which is our

main focus.

Our study is also related to a large banking literature on credit risk transfers. Early work

such as Greenbaum and Thakor (1987) investigate a bank’s choice of whether to fund the

loans it originates by either issuing deposits or by selling loans to investors. They show

that higher quality loans will be sold while lower quality loans will be funded via deposits.

Pennacchi (1988) considers a model where banks may improve the returns on loans by

monitoring borrowers. He shows that by designing the loan sales contract in a way that

gives the bank a disproportionate share of the gains to monitoring, a greater share of the

loan can be sold and, hence, a greater level of bank profits can be attained. Gorton and

Pennacchi (1995) study a model of incentive-compatible loan sales that allows for implicit

contractual features between loan sellers and loan buyers. They theoretically and empirically

show that, by maintaining a portion of the loan’s risk, banks convince loan buyers of its

commitment to evaluate the credit of borrowers. DeMarzo and Duffi e (1999) consider the

optimal design of an asset-backed security and analyze a trade-off between the retention

cost of holding cash flows, and the liquidity cost of including the cash flows and making

the security design more sensitive to the issuer’s private information. Allen and Carletti
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(2006) develop a model of how credit risk transfer affects contagion. Using a model with

banking and insurance sectors, they show that credit risk transfer is beneficial when banks

face uniform demand for liquidity but when they face idiosyncratic liquidity shock, credit

risk transfer can increase contagion. Parlour and Plantin (2008) develop a model in which

banks receive either proprietary information about loan quality or a shock to their discount

rate. Either effect induces banks to transfer credit risk resulting in an adverse selection

problem. Parlour and Plantin investigate when such credit risk markets arise and whether

this is effi cient. Our work is related to these prior studies because either private information,

or monitoring or risk-sharing concerns is an important force that affects asset transfers in

all these studies. However, none of them study measurement issues which is our main focus.

An exception is Goldstein and Leitner (2018) who develop a model in which disclosure can

destroy risk-sharing opportunities for banks but some level of disclosure is necessary for risk

sharing to occur. However the focus of their study differs significantly from ours. They study

the optimal disclosure policy of a regulator who has information about banks as a result of

conducting stress tests. We investigate how optimal measurement rules should be designed

to affect banks’retention decisions in the presence of both moral hazard and adverse selection

problems.

More broadly, our focus on measurement rules on asset transfer policies connects our pa-

per to the literature on the role of accounting measurement in the financial industry. Corona,

Nan, and Zhang (2014) examine how improving the quality of accounting information affects

the effi ciency of capital requirements and banks’risk-taking incentives, taking into account

the competition among banks. Corona, Nan, and Zhang (2019) examine the coordination role

of stress-test disclosure in affecting bank risk-taking. Gao and Jiang (2018), Zhang (2019),

7



and Liang and Zhang (2019) study how different aspects of accounting measurements may

help to stabilize bank runs. Corona, Nan, and Zhang (2019) and Bertomeu, Mahieux, and

Sapra (2022) study the joint effi cacy of capital requirement policy and accounting measure-

ment rules in disciplining banks’risk-taking and stimulating bank lending.2 Lu, Sapra, and

Subramanian (2019) study the optimal use of mark-to-market accounting in implementing

capital requirements, in the presence of asymmetric information and agency conflicts. Our

study is more closely related to Bleck and Gao (2017) who analyze banks’loan origination

and retention decisions in a signalling model. However, unlike our study, they do not exam-

ine the ex ante optimal measurement rule but instead focus on characterizing the economic

consequences of two specific measurement rules: mark-to-market versus historical cost. They

find that, compared to historical cost, mark-to-market accounting improves the accuracy of

loan valuation, forces good banks to retain more risk on their balance sheet, and can reduce

banks’origination efforts.

Finally, the empirical accounting literature provides evidence on how the accounting for

securitization may have economic consequences on firms. Dechow and Shakespeare (2009)

investigate whether firms exploit the accounting treatment for securitization to burnish their

financial statements. Barth, Omarzabal, and Taylor (2012) show that credit-rating agencies

and the bond market differ in their assessments of credit risk transfers in terms of how

they evaluate retained vs. non-retained interests of securitized assets. More recently, Dou,

Ryan, and Xie (2018) provide evidence on how recent accounting standards that tightened

the accounting for securitization and consolidations have real effects on banks’mortgage

2Mahieux (2019) studies the joint effi cacy of capital requirements and accounting rules in the specific
context of fair value accounting.
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-
t = 0r t = 1r t = 2r t = 3r

Asset transfer
measurement rules
are prescribed. Bank
originates its loans
and privately observes
loan quality θ.

Bank chooses effort m
to monitor its loans.
Bank chooses fraction of
loans α to retain and
off-loads remaining loans
in market.

Bank measures loan
value in accordance
with accounting rules
and issues report r.
Market offers price p
based on report r.

Loan payoffs π
are realized.

Figure 1: Timeline of the model

approval and sale rates. We do not focus on the specifics of the accounting standards for

transfers in our model. Instead, we investigate how, given retention policies, measurement

rules should be designed to influence informational features of accounting reports, and relate

the implications of those measurement rules to the current standards for asset transfers.

The remainder of the paper is structured as follows. Section 2 describes the model.

Section 3 analyzes the model. Section 4 concludes. An Appendix contains the proofs of the

major results.

2 The Model

2.1 Timing of events

We examine an environment that consists of a representative bank owner (henceforth, bank)

and a secondary loan sale market. The bank has an additive and separable utility function

with constant absolute risk aversion τ > 0. The discount factor is normalized to 1. Figure

1 summarizes the timing of events.

At date t = 0, the bank is endowed with a portfolio of loans originated earlier. At the

terminal date, t = 3, the loan portfolio generates stochastic terminal cash flows, π (θ,m),

that depend on both the credit quality θ of the loan portfolio and the bank’s ex-post effort
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m to monitor borrowers. For simplicity, we assume that

π = θ +m+ η. (1)

The loan quality θ̃ has a distribution F (.) and a density f (.) with full support on
[
θ, θ̄
]
. The

random variable η̃ follows a normal distribution with mean 0 and precision hη. Equation

(1) implies that either a higher loan quality or a greater monitoring effort improves the

performance of the loan portfolio in the sense of first-order stochastic dominance. The

shock η̃ captures the residual uncertainty regarding the loans’cash flows for a given level of

monitoring effort and loan quality. We assume that the bank learns the quality θ of its loan

portfolio privately in the process of loan origination and such information cannot be credibly

disclosed to outsiders.3

After originating the loan portfolio, i.e., at t = 1, the bank chooses unobservable effort

m > 0 to monitor borrowers at a private cost of c
2
m2, where c > 0. In addition, since the

bank is risk averse, it has an incentive to engage in credit risk transfer by selling a portion

of its loan portfolio in the secondary loan sale market. In particular, the bank chooses the

fraction α ∈ [0, 1] of the loan portfolio to retain and therefore the fraction (1 − α) to sell.

We assume that the proportion α is publicly observable.

Before the terminal payoffs π of the loan portfolio are realized, at t = 2, the bank issues

an accounting report r that measures π. We adopt the following specification of the report

r = π + ε. (2)

3The assumption that banks have private information about borrower default risk is consistent with
research by Dahiya, Puri and Saunders (2003) and Marsh (2006).
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The measurement noise ε̃ is normally distributed with mean 0 and precision hε. A key focus

of our study is to derive the optimal ex-ante asset transfer measurement rules that govern the

measurement process and the informational features of the accounting report r. To this end,

we consider and compare two types of measurement rules: a uniform measurement rule that

does not depend on observable bank characteristics and hence is the same across all banks

and a contingent measurement rule that sets measurement precision based on observable

bank characteristics. One such bank characteristic in our model is the proportion α of the

loan portfolio that the bank retains. Hence under a uniform measurement rule, the required

measurement precision is independent of the fraction of loan retention α whereas under a

contingent rule, the measurement precision is designed to be a function of α.

After releasing the report, the bank sells or equivalently transfers without recourse a

fraction 1− α of its loan portfolio at a per-unit transfer price p.4 In practice, the secondary

loan sale market is often illiquid and transaction prices can be highly sensitive to liquidity

effects. In order to account for this illiquidity of the loan portfolio, following Plantin, Sapra

and Shin (2008), we assume that the loan sale price p is given by:5

p = E [π̃|r]− δ(1− α), (3)

where E [·] denotes the expectations operator, 1−α is the portion of loans that are sold, and

δ ≥ 0 is a parameter that captures the liquidity of the loans. The loan price depends on both

4Throughout the paper, we use the terms loan sales and loan transfers interchangeably. By loan transfers,
we therefore mean loan transfers without recourse.

5Our main result holds qualitatively when the loan market is fully competitive and liquid, i.e., δ = 0 and
the price equals the expected terminal loan cash flows. We introduce the liquidity discount δ to capture
a key institutional feature of the secondary loan sale market and to generate further empirical and policy
implications.
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the expected terminal cash flows of the loan portfolio E [π̃|r] conditional on the report and

the liquidity of the loans. When δ = 0, the loan market is infinitely liquid so that the price

of the loan equals its terminal cash flow in expectation. When δ > 0, the price decreases in

the amount of loans sold. The larger δ is, the more illiquid the loan market is and the more

sensitive the selling price is to the loan sale amount. In this light, the price effect of loan

sales captures the risk-bearing capacity of the secondary loan sale market to absorb loans

that banks off-load.

At t = 3, the terminal payoffs π of the loan portfolio are realized.

2.2 Payoffs

As a preliminary analysis, we specify the bank’s payoff and its ex ante surplus. The bank

obtains payoffs at three dates. At t = 1, the bank incurs a private monitoring cost of c
2
m2.

At t = 2, the bank receives a price of (1− α) p from transferring the loans in the loan sale

market. We will verify that, given the loan quality θ, the equilibrium price p is normally

distributed. Therefore, using standard results in finance, the bank’s expected utility of the

date-2 consumption can be represented as

(1− α)E [p̃|θ]− τ

2
(1− α)2 V ar (p̃|θ) . (4)

Note that since the bank is risk averse, higher price volatility reduces the bank’s payoffs.

At t = 3, the bank receives a terminal cash flow from the loans it retains, απ. Since π is

normally distributed given θ, the bank’s expected utility of the date-3 consumption can be
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represented as

αE [π̃|θ]− τ

2
α2V ar (π̃|θ) . (5)

In sum, since the bank’s utility is additive and separable, its total payoff is the sum of its

expected payoffs at the three dates t ∈ {1, 2, 3}, i.e., for a given θ, the bank chooses its

monitoring effort m and the asset transfer decision α to maximize

U (m,α; θ) = E [(1− α) p̃+ απ̃|θ]− τ

2

[
α2V ar (π̃|θ) + (1− α)2 V ar (p̃|θ)

]
− c

2
m2. (6)

Lastly, the ex-ante surplus equals the bank’s ex-ante expected utility

W = Eθ

[
U
(
m,α; θ̃

)]
=

∫ θ

θ

U (m,α; θ) f(θ)dθ. (7)

2.3 Assumptions

We now motivate some key ingredients of our model.

First, we assume the bank acts in a risk averse manner in order to induce the bank to

engage in credit risk transfers via loan sales in the secondary market. Credit risk transfers

play a key economic motive for banks’activities of loan sales and securitization in practice.

For instance, Pozar et al (2010), in discussing the effi ciency gain of securitization, argue that

“securitization involving real credit risk transfer is an important way for an issuer to limit

concentrations to certain borrowers, loan types and geographies on its balance sheet.” In

this light, outside investors may be better suited than loan originators in bearing loan risk,

because investors often hold a broadly diversified portfolio of assets. Similarly, Stein (2010)
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argues “(w)hen banks sell their loans into the securitization market, they distribute the risks

associated with these loans across a wider range of end investors, including pension funds,

endowments, insurance companies, and hedge funds, rather than taking on the risks entirely

themselves. This improved risk-sharing represents a real economic effi ciency and lowers the

ultimate cost of making the loans.” Interestingly, Goldstein and Leitner (2018) show that

risk-neutral banks can still behave in a risk-averse manner due to the liquidity needs of their

consumers. Stated differently, liquidity needs induces risk aversion even in the presence of

fundamental risk neutrality.6

Second, our focus is on how asset transfer measurement rules affect the informational

features (i.e., measurement precision) of accounting reports. Consequently, we model the

simplest form of credit risk transfer: loan transfers without recourse. In practice, credit

risk transfers may involve complex security designs such as securitization and/or the use of

credit derivatives that specify the rights of transferors and transferors under various contin-

gencies.7 In that sense, we cannot directly speak to control issues that seem to be the focus

of standard setters. However, by focusing on loan transfers without recourse, we believe

that our framework provides a simple but important benchmark for understanding how the

proportion of loans transferred should be factored into judgements about how such loans

should be measured. To the extent that a bank that has transferred most of its loans would

have relatively little control over the loans, our examination of how measurement should be

6Alternatively, we could assume a risk-neutral bank receiving shocks to its discounting factor (i.e., shocks
to the opportunity cost of carrying outstanding loans) as in Parlour and Plantin (2008), which also creates
a demand for loan sales.

7Loan sales and securitizations are the two main types of credit risk transfers. A loan sale merely transfers
a part of the ownership of a loan portfolio to others, whereas securitization alters patterns of cash flows and
other asset properties. Furthermore, most loan sales are made without recourse and, unlike securitization,
there are usually no explicit credit enhancement (Greenbaum et al, 2019).
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made contingent on the proportion of asset transfer provides theoretical support for adopting

“control”as the key guiding principle under current asset transfer measurement rules.

3 Analysis

3.1 Observable loan quality

We start the analysis by assuming that loan quality θ is publicly observable. We solve the

model using backward induction. At t = 2, the market offers a price, given in (3), that

depends on both the expected terminal cash flows π of the loan portfolio conditional on the

report r and the liquidity of the loan portfolio. Since terminal cash flows π depend on the

bank’s unobservable monitoring effort, the market rationally forms a conjecture m̂ about the

bank’s monitoring effort in order to use the report to update its beliefs about π. Of course,

this conjecture must be correct in equilibrium. Given m̂, the distribution of π conditional

on r is normal so that the price for loans is given by

p∗ = E [π̃|r, m̂]− δ(1− α) = βr + (1− β) (θ + m̂)− δ(1− α). (8)

The price depends on a weighted average of the accounting report r and the prior expectation

about π, given the conjecture about the monitoring effort. The weight β ≡ hε
hε+hη

placed

on the report r is strictly increasing in and is isomorphic to the measurement precision hε.

Note that β = 0 corresponds to the case of no measurement whereas β = 1 corresponds to

the case of perfect measurement. For expositional convenience, we hereafter refer to β as

the measurement precision of the report.
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We next solve for the bank’s choice of monitoring effort m at t = 1. Substituting the

transfer price (8) into the bank’s payoff (6) and rearranging terms yields

U (m,α; θ) = θ+[α + (1− α) β]m− c

2
m2︸ ︷︷ ︸

gain from monitoring

+(1− α) (1− β) m̂− τ

2hη

(
α2 + (1− α)2β

)
︸ ︷︷ ︸
loss from ineffi cient risk sharing

−δ(1−α)2.

(9)

From (9), it follows that choosing both the proportion of loan retention and the precision

of measurement of loan performance results in a trade-off: they both provide monitoring

incentives that increase the bank’s payoffs but they simultaneously inhibit effi cient risk-

sharing that reduces the bank’s payoffs. Furthermore, the last term of (9) captures the

liquidity cost borne by the bank when transferring loans in the secondary market. The more

loans the bank transfers, the greater the liquidity cost.

To see the monitoring roles of loan retention and measurement, differentiating (9) with

respect to m yields the equilibrium monitoring effort m∗ that satisfies

α + (1− α) β = cm∗. (10)

The right-hand side of (10) represents the marginal cost of monitoring, while the left-hand

side represents the marginal benefit of monitoring. The left-hand side captures the often-

debated incentive problem when banks transfer loans (e.g., Keys et al, 2010): their incentives

to monitor their loans are lower whenever they have “less skin in the game.”To see this more

clearly, note that when β = 0, m∗ decreases as the proportion of loan retention α decreases.

However, in the presence of measurement, i.e., when β > 0, (10) also suggests that higher

precision of measuring loan performance (i.e., a larger β) is a substitute for loan retention
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in incentivizing the bank to monitor. More precise measurement improves the effi ciency

of pricing the loans in alignment with their underlying cash flows, thereby disciplining the

bank.

Similarly, to see their risk-sharing roles, we next derive the bank’s loan transfer decision

α and the optimal measurement precision β that maximizes the ex-ante surplus (7). Note

that, when the loan quality θ is observable, implementing either a uniform measurement rule

or a rule contingent on α does not make a difference. This is because, in this case a uniform

rule essentially makes the measurement precision β independent of α whereas a contingent

rule allows β to be set after observing α. However, the order regarding the choices of α and β

does not matter because, absent any private information about θ, the bank’s payoff coincides

with the ex-ante surplus, thereby making the uniform and the contingent rules equivalent.

To see the algebraic equivalence, substitute the equilibrium monitoring effort specified in

(10) into (9) to get

U (m∗, α; θ) = θ +m∗ − c

2
(m∗)2 − τ

2hη

(
α2 + (1− α)2β

)
− δ(1− α)2. (11)

Note that we have imposed the rational expectation requirement that the market’s conjecture

is consistent with the equilibrium, i.e., m̂ = m∗.8 In addition, from (7), the ex-ante surplus

W ≡
∫ θ

θ

U (m,α; θ) f(θ)dθ = E(θ̃)+m∗− c
2

(m∗)2− τ

2hη

(
α2 + (1− α)2β

)
−δ(1−α)2. (12)

Note thatW differs from U (m∗, α; θ) only by the constants θ and E
(
θ̃
)
. Therefore, the pair

8Note that given {α, β, c} are common knowledge, the market can perfectly conjecture m from (10).
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of {α, β} that maximizes the bank’s payoff U (m∗, α; θ) also maximizes the ex-ante surplus

W . In the next lemma, we formally state the equivalence result between the uniform and

the contingent measurement rules when private information is absent.

Lemma 1 When the loan quality θ is publicly observable, the equilibrium outcomes under

the uniform measurement rule coincide with those under the contingent measurement rule.

A direct implication of Lemma 1 is that, since the bank’s objective function is isomor-

phic to the ex-ante surplus, we only need to solve for the pair of {α, β} that maximizes

(12) to completely characterize the equilibrium. Differentiating (12) with respect to β and

rearranging terms yields

(1− cm∗) ∂m
∗

∂β
=

τ

2hη
(1− α)2. (13)

Equation (13) characterizes the optimal trade-off in setting the measurement precision. The

left-hand side of (13) captures the marginal benefit of improving measurement precision in

disciplining the bank’s monitoring effort.9 The right-hand side captures the marginal cost of

more precise measurement in inhibiting the effi cient transfer of risk. Recall that transferring

the loans from the bank to the market improves effi ciency because the market is better at

absorbing risk than the risk-averse bank. Such risk transfer is best achieved if the transfer

price is insensitive to the performance of the loan portfolio so that the risk-averse bank bears

no risk after the transfer. However, more precise measurement makes the price more sensitive

to the terminal payoffs so that the bank faces higher price volatility even after off-loading

its loans. Such volatility constitutes a cost of measurement.

9The left-hand side of (13) is strictly positive because, from (10), ∂m∗

∂β = 1−α
c > 0 and 1 − cm∗ =

(1− α) (1− β) > 0. Thus the left-hand side of (13) is given by (1−α)2
c (1− β).
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Interestingly, the right-hand side of (13) decreases in α which, in turn, suggests that—

unlike their monitoring roles discussed above where they are substitutes—higher precision of

measurement and loan retention are complements when it comes to risk-sharing in the sense

that the risk-sharing loss from measurement is lower when the bank has retained more loans,

and vice versa. Intuitively, the price volatility induced by measurement is lower the larger

the proportion of the loan portfolio that the bank retains. Accordingly, measurement is least

costly to the bank from a risk-sharing perspective if the bank has retained a large proportion

of its loan portfolio.

Analogously, differentiating (12) with respect to α and rearranging terms yields10

(1− cm∗) ∂m
∗

∂α
+ 2δ(1− α) =

τ [α− (1− α)β]

hη
. (14)

Equation (14) illustrates the trade-offs the bank makes in its asset transfer decision: while

transferring more assets improves risk sharing, it also weakens the bank’s incentive to monitor

in addition to the liquidity cost the bank incurs when selling loans in the illiquid secondary

market. Moreover, the right-hand side of (14) once again illustrates the complementarity

between measurement and loan retention in affecting the risk-sharing loss. Given measure-

ment, loan retention has a smaller adverse effect on risk sharing and the adverse effect gets

even smaller as the proportion of the loan portfolio transferred increases.11 This is because,

conditional on measurement, the bank would still incur the risk-sharing loss even if it had

transferred most of its loans.

10The left-hand side of (14) is strictly positive because, from (10), ∂m∗

∂α = 1−β
c > 0 and 1 − cm∗ =

(1− α) (1− β) > 0. Thus the first term on the left-hand side of (14) is given by 1−α
c (1− β)2.

11Mathematically, the right-hand side of (14) decreases in β and the decrease is proportional to (1− α).
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Solving equations (13) and (14) yields the equilibrium levels of loan retention and mea-

surement precision. We formally state the equilibrium in the following proposition.

Proposition 1 When loan quality θ is publicly observable, the optimal choices {α0, β0} of

loan retention and measurement precision are, respectively,


α0 =

8δh2η+4hητ−cτ2
8δh2η+τ(8hη−cτ)

and β0 = 1− cτ
2hη

if τ
2hη

< 1
c
;

α0 = (1+2cδ)hη
(1+2cδ)hη+cτ

and β0 = 0 if τ
2hη
≥ 1

c
.

(15)

Proposition 1 is intuitive and illustrates that, absent any private information, measure-

ment rules and asset retention decisions are decoupled in the sense that they do not depend

on each other. Instead, the optimal measurement rule sets the same measurement precision

for all banks regardless of their loan quality θ. Moreover, the measurement rule requires

measuring the value of transferred loans if and only if monitoring considerations are more

important relative to risk-sharing considerations. In particular, β0 > 0 whenever τ
2hη

< 1
c
,

i.e., when banks have sharp incentives to monitor loans (i.e., c is low) but the bank’s risk

aversion τ is low and the loan’s terminal cash flows are less volatile, i.e., hη is high. Ac-

cordingly, upon measurement, the precision should be higher, i.e., β0 increases, when either

c decreases and/or τ
hη
decreases. Conversely, as risk considerations become more important,

i.e., τ
hη
increases but monitoring incentives become less sharp, i.e., monitoring cost c in-

creases, the cost of measurement in inhibiting risk transfer increases relative to the benefit

of measurement in disciplining the bank. In that case, the optimal measurement rule calls

for less and less precise measurement, i.e., β0 decreases to zero.
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3.2 Unobservable loan quality

We now analyze the complete model in which the loan quality θ is privately known by

the bank. In the presence of private information, the bank’s objective function no longer

coincides with the bank’s ex-ante surplus. Therefore, the equilibrium outcome under the

uniform measurement rule may now differ from that under the contingent rule. We examine

the equilibrium outcome under each of the two rules separately.

3.2.1 Uniform measurement rule

We start with the uniform measurement rule in which the measurement precision β is the

same regardless of banks’loan retention choices. We solve the model using backward induc-

tion. At t = 2, the price p depends on the measurement report r and also on any information

about loan quality θ that the market can extract from observing the bank’s retention choice

α. The loan retention fraction α now acquires an informational role because the bank chooses

α after observing θ. Specifically, to infer θ from α, suppose the market forms a conjecture

α (θ) about the bank’s loan retention schedule. If the schedule α (θ) is strictly monotone in

θ (as it will turn out to be in equilibrium), the market can infer the exact value of θ. We

denote the inferred value of θ as θ̂ (α). The price p incorporates this inferred value θ̂ (α)

rather than the true value θ. Replacing θ with θ̂ (α) in the pricing formula (8) yields

p∗ = E [π̃|α, r, m̂]− δ(1− α) = βr + (1− β) (θ̂ (α) + m̂)− δ(1− α). (16)

Next, we solve for the bank’s choices of monitoring effort m and retention fraction α at

t = 1. Substituting the transfer price (16) into the bank’s payoff (6) and rearranging terms,
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we obtain

U (m,α; θ) = [α + (1− α) β] (θ +m) + (1− α) (1− β)
(
θ̂ (α) + m̂

)
(17)

− δ(1− α)2 − τ

2hη

(
α2 + (1− α)2β

)
− c

2
m2.

Differentiating (17) with respect to m yields m∗ = α+(1−α)β
c

. Substituting m∗ into (17) and

imposing the rational expectation requirement that m̂ = m∗ yields

U (m∗, α; θ) = [α + (1− α) β] θ + (1− α) (1− β) θ̂ (α) (18)

+m∗ − c

2
(m∗)2 − δ(1− α)2 − τ

2hη

(
α2 + (1− α)2β

)
.

Expression (18) suggests that the market inference θ̂ (α) affects the bank’s payoff and

hence potentially changes the bank’s equilibrium choice of loan retention α (θ). Rational

expectation equilibrium requires that the inference is consistent with the bank’s equilibrium

choice, i.e., θ̂ (α (θ)) = θ. As is standard in the literature (e.g., Spence, 1974), such a signaling

equilibrium is sustained if the “single-crossing property” holds. In our environment, the

single-crossing property requires that the bank with a higher loan quality (high θ) is willing

to retain a higher fraction of its loan portfolio than the bank with a lower loan quality. To

verify this property, note that the marginal rate of substitution between θ̂ and α in the

bank’s payoff (18) is

∂θ̂

∂α
= −Uα

Uθ̂
= −θ − θ̂ (α)

1− α − 1− β
c

+
τ (α− (1− α)β)

(1− α) (1− β)hη
+

2δ(1− α)

(1− α) (1− β)
, (19)
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which is strictly decreasing in the loan quality θ. In other words, a high θ bank is more willing

to retain a higher proportion of the loan portfolio than a low θ bank for the same amount

of improvement in the market inference. With the single-crossing property established, we

now formally construct the fully revealing equilibrium in the following proposition.

Proposition 2 Given the uniform measurement precision β,

1. the equilibrium loan retention schedule is given by

αU(θ; β) = 1 +
cτ

((1− β)2 + 2cδ)hη + (1 + β)cτ
w

(
−e−

(
1+

(1−β)hη(θ−θ)
τ

))
, (20)

where w(.) is the Lambert W function (i.e., the principal solution for y in x = yey);

2. the equilibrium loan retention schedule αU(θ; β) is strictly increasing in loan quality θ

and the liquidity discount δ, but strictly decreasing in the degree of risk aversion τ , the

monitoring cost c, and the residual variance of loan cash flows 1
hη
.

Proposition 2 is intuitive and states that a bank with a higher-quality loan portfolio is

induced to transfer a smaller proportion of its portfolio in order to obtain a more favorable

price.12 Furthermore, due to its informational role, such a loan retention schedule exhibits

excessive retention which is socially ineffi cient. More precisely, the following corollary shows

that, absent measurement, banks retain a larger fraction of their loans when there is private

information than the optimal fraction under no private information.

12Note that by setting δ = 0, c =∞ (so that m = 0) and β = 0, it is straightforward to verify that αU (θ; 0)
coincides with the fully revealing retention schedule in Leland and Pyle (1977).
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Corollary 1 Under no measurement (β = 0), banks retain larger fractions of loans when the

loan quality θ is unobservable than the optimal fraction when θ is observable, i.e., αU(θ; 0) ≥

α0 for all θ where α0 is defined in Proposition 1. The inequality is strict if θ > θ.

An implication of Corollary 1 is that, given the bank’s over-retention incentives under

no measurement, and that the loan retention schedule αU(θ; β) explicitly depends on β, the

precision of the measurement rule, the optimal measurement rule should be fine-tuned in

order to mitigate the over-retention ineffi ciency, i.e., shifting αU(θ; β) closer to α0. Toward

that end, the following proposition sheds light on how a uniform increase of measurement

precision over no measurement affects the bank’s over-retention incentives.

Proposition 3 Consider a uniform marginal increase of measurement over no measurement

(i.e., β = 0):

1. when τ
2hη

< 1
c
, measurement shrinks over-retention for all banks, i.e.,

∂ (αU(θ; β)− α0)

∂β

∣∣∣∣
β=0

< 0 for all θ > θ; (21)

2. but when τ
2hη
≥ 1

c
, measurement exacerbates over-retention if the bank’s equilibrium

retention fraction is suffi ciently small.13

Proposition 3 suggests that measurement rules that mandate a uniform increase of mea-

surement may not necessarily be beneficial. A suffi cient condition under which uniform

13Note that since αU (θ; 0) is strictly increasing in θ, the condition that αU (θ; 0) is suffi ciently small is
equivalent to a condition that the loan quality θ is suffi ciently small.
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measurement diminishes over-retention and thus improves effi ciency is that risk-sharing con-

siderations are relatively weak compared to monitoring incentives (i.e., τ
2hη

< 1
c
). But when

risk-sharing considerations are significant, uniform measurement could actually worsen the

over-retention ineffi ciency. Proposition 3 thus points to an effi ciency gain from making asset

transfer measurement rules contingent on observable bank characteristics. In particular, part

2 of Proposition 3 suggests that it is optimal to require less precise, or even no measurement

if the bank has transferred most of its loans (i.e., when α is relatively small).

To provide some intuition for Proposition 3, it is instructive to investigate how increasing

precision affects over-retention incentives. Recall that absent private information, the loan

retention schedule α0 is insensitive to the loan quality θ. But when there is private infor-

mation, the loan retention schedule αU is strictly increasing in θ. Therefore, over-retention

becomes more severe if the retention schedule rises more steeply in the loan quality (i.e., ∂αU
∂θ

is large). To study the behavior of ∂αU
∂θ
, we reproduce its expression (equation (45) in the

Appendix) below, i.e.,

∂αU
∂θ

=

benefit of over-retention︷ ︸︸ ︷
(1− α) (1− β)

τ [α− (1− α)β]

hη
− 2δ(1− α)− 1− α

c
(1− β)2︸ ︷︷ ︸

loss of over-retention

. (22)

Equation (22) illustrates how a uniform measurement rule affects the retention schedule.

The numerator of (22) captures the benefit of over-retention stemming from improving the

market inference θ̂ (α) about the loan quality. This benefit increases as the weight on θ̂ (α)

in the bank’s payoff (18) increases. Importantly, more precise measurement (i.e., a larger β)

diminishes the weight placed on the inference, as the market relies more on the report and
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less on the level of retention in its pricing of the loans.14 Stated differently, measurement

reduces the bank’s benefit of over-retention and shrinks the amount of excess retention in

equilibrium. We call the latter effect, the inference effect of measurement.

The denominator of (22) represents the bank’s net loss from over-retention. Recall from

(14) that, absent information asymmetry, the bank sets the optimal loan retention amount

by trading off the marginal gain from improving monitoring incentives against the marginal

loss of risk sharing and the liquidity cost. Excess loan retention causes more risk-sharing

loss relative to the monitoring gain, thus resulting in a net loss for the bank. Examining

the denominator of (22) suggests that increasing measurement has ambiguous effects on the

over-retention loss.15 On the one hand, more precise measurement reduces the risk-sharing

loss from excess retention due to the complementary roles of retention and measurement

on risk-sharing. Over-retention, therefore, is less costly when the bank is already required

to measure the loans transferred, compared with under no measurement. This risk-sharing

effect of measurement, therefore, encourages the bank to retain more loans and exacerbates

the over-retention ineffi ciency. On the other hand, improving measurement precision also

decreases the benefits of loan retention on monitoring, because measurement is a substitute

for loan retention in incentivizing the bank to monitor loans. This monitoring effect of

measurement thus increases the net loss from over-retention, which curbs excess retention.

The overall effect of measurement on excess retention therefore depends on the interplay

14Mathematically, note that, from (18), the weight on θ̂ is exactly (1− α) (1− β) (i.e., the numerator of
(22)) and strictly decreasing in the measurement precision β.
15Mathematically, the first two terms in the denominator of (22) represent the risk-sharing loss from excess

retention and the liquidity cost, respectively, whereas the last term represents the monitoring gain. Note
that the first and the last terms are decreasing in the measurement precision β. Hence the overall effect of
β on the denominator of (22) is ambiguous.
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among the risk-sharing effect that increases retention and the inference and the monitor-

ing effects that decrease retention. When risk-sharing considerations are less important than

monitoring considerations, the risk-sharing effect is dominated and a uniform increase of mea-

surement always curbs over-retention. This explains the conditions in part 1 of Proposition

3. However, when risk-sharing considerations become more important, the risk-sharing effect

can sometimes dominate, in which case measurement induces excessive retention, thereby

impairing effi ciency. The risk-sharing effect of measurement in inducing excessive reten-

tion becomes especially important when the bank has transferred a large proportion of its

loan portfolio and hence more of its loans are subject to the price volatility stemming from

measurement. This explains the conditions in part 2 of Proposition 3.

An implication of Proposition 3 is that the effi ciency can be improved if one tailors asset

transfer measurement rules to banks’characteristics such as their asset transfer decisions.

We next solve for such an optimal contingent measurement rule.

3.2.2 Contingent measurement rule

We denote the optimal choice of the contingent measurement rule as β (α), which is a general

function of the retention fraction α that will be determined in equilibrium. We solve the

model using backward induction. Note first that given the measurement rule β (α), the loan

transfer price p and the bank’s monitoring effort m∗ are the same as those derived under the

uniform rule, i.e., equations (16) and (10), respectively.

Next, we derive the bank’s equilibrium loan retention schedule α (θ). Such schedule

α (θ) must satisfy a bank’s incentive compatibility (IC) constraints, i.e., a type θ bank must

prefer choosing α (θ) over the retention choice α (θ′) designed for type θ′ 6= θ. Without loss

27



of generality, let’s assume that θ′ > θ. Importantly, note that the optimal design of the

contingent rule β (α) affects the IC constraints and, through this channel, influences the

bank’s retention schedule. To illustrate the effect of the contingent measurement rule, we

now formally derive the bank’s IC constraints. If the type θ bank chooses α (θ), substituting

β = β (α) and α = α (θ) into (18) yields the payoffs

U (θ) ≡ U (m∗ (α (θ)) , α (θ) ; θ)

= θ +m∗ (α (θ))− c

2
(m∗ (α (θ)))2 − τ

2hη

[
α (θ)2 + (1− α (θ))2β (α (θ))

]
− δ(1− α (θ))2,

(23)

where the monitoring effort m∗ (α (θ)) = α(θ)+(1−α(θ))β(α(θ))
c

. Note that we have imposed the

rational expectation requirement that the market inference is consistent with the bank’s

equilibrium choice, i.e., θ̂ (α (θ)) = θ. But if the type θ bank deviates from the equilibrium

schedule and instead chooses α (θ′), its payoffs equal

U (θ′, θ) ≡ U (m∗ (α (θ′)) , α (θ′) ; θ)

= [α (θ′) + (1− α (θ′)) β (α (θ′))] θ + (1− α (θ′)) (1− β (α (θ′))) θ′ +m∗ (α (θ′))

− c

2
(m∗ (α (θ′)))

2 − τ

2hη

[
α (θ′)

2
+ (1− α (θ′))2β (α (θ′))

]
− δ(1− α (θ′))2. (24)

Note that deviation of type θ to type θ
′
by choosing α (θ′) instead of α (θ) results in two

differences between U (θ) and U (θ′, θ). First, the market inference about the bank’s loan

quality changes as they infer the bank’s type to be θ′ upon observing a retention amount of

α (θ′). Second, under the contingent rule, the bank that changes its asset transfer decision is
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required to adopt a different precision level β (α (θ′)) regarding how the bank measures the

transfer. This feature implies that one may influence the bank’s asset transfer decision by

imposing different measurement requirements for any type θ′ 6= θ.

To ensure no deviation by the type θ bank, IC constraints require that U (θ) ≥ U (θ′, θ).

Substituting (23) and (24) into the IC constraint and rearranging terms yields

U (θ) ≥ U (θ′; θ)

= [α (θ′) + (1− α (θ′)) β (α (θ′))] (θ − θ′)

+ [α (θ′) + (1− α (θ′)) β (α (θ′))] θ′ + (1− α (θ′)) (1− β (α (θ′))) θ′

+m∗ (α (θ′))− c

2
(m∗ (α (θ′)))

2 − τ

2hη

[
α (θ′)

2
+ (1− α (θ′))2β (α (θ′))

]
− δ(1− α (θ′))2

= U (θ′)− [α (θ′) + (1− α (θ′)) β (α (θ′))] (θ′ − θ)︸ ︷︷ ︸
deviation loss >0

. (25)

The IC constraint (25) implies the payoffs U (θ′; θ) of type θ who chooses the retention

allocation of a higher type θ
′
is strictly lower than U(θ), the payoffs of type θ by

[α (θ′) + (1− α (θ′)) β (α (θ′))] (θ′ − θ) , (26)

which captures the expected loss from deviation. Intuitively, to prevent the type θ bank

from choosing the retention of the higher type θ′, the type θ′ bank is induced to increase its

retention level α (θ′), which reduces U (θ′; θ) in equilibrium. Furthermore, the deviation loss

term also suggests that requiring a higher measurement precision can reduce the marginal

effect of excess loan retention in deterring the type θ bank from mimicking type θ
′
. In

fact, if measurement is perfect (i.e., β (α (θ′)) = 1), increasing α (θ′) would have no impact
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on the deviation term. This suggests a disciplinary role of measurement in curbing over-

retention. Intuitively, more precise measurement makes the loan transfer price depend more

on the measurement report (which reflects the bank’s true loan quality) and less on the

market’s prior expectation about the loan cash flow (which is formed based on the inferred

loan quality), thus weakening the bank’s incentive to influence the market inference via loan

retention.16 Accordingly, an implication from examining the IC constraint (25) is that, when

the loan retention is overly high, the measurement precision should be increased in order to

curb such over-retention. We will verify that this implication is indeed true when we solve

for the optimal measurement rule.

Next, to ensure no deviation by the type θ′ bank, the analogous IC constraint requires

that U (θ′) ≥ U (θ; θ′), which is given by

U (θ′) ≥ U (θ) + [α (θ) + (1− α (θ)) β (α (θ))] (θ′ − θ) . (27)

Combining (25) and (27) yields

[α (θ) + (1− α (θ)) β(α (θ))] (θ′ − θ) ≤ U (θ′)−U (θ) ≤ [α (θ′) + (1− α (θ′)) β(α (θ′))] (θ′ − θ) .

(28)

Note that (28) implies that for θ′ > θ, α (θ′)+(1− α (θ′)) β(α (θ′)) > α (θ)+(1− α (θ)) β(α (θ)),

i.e., α (θ) + (1− α (θ)) β(α (θ)) is non-decreasing in θ. Taking the limit of θ′ → θ, we obtain

the IC constraint as:

U ′ (θ) = α (θ) + (1− α (θ)) β(α (θ)). (29)

16The ex-post disciplining role of measurement in alleviating over-retention is similar to the disciplinary
role of a performance report first developed by Kanodia and Lee (1998).
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Formally, we next state the conditions under which the retention schedule α (θ) is incentive

compatible.

Lemma 2 Given the measurement rule β (α), the loan retention schedule α (θ) is incentive

compatible if and only if:

1. U ′ (θ) = α (θ) + (1− α (θ)) β(α (θ)) and

2. α (θ) + (1− α (θ)) β(α (θ)) is non-decreasing in θ.

As is standard in the adverse selection literature, incentive compatibility requires both

(29) and a monotonicity condition. In deriving the optimal schedules of α (θ) and β (α), we

next ignore the monotonicity condition and verify that the optimal schedules from the relaxed

problem do indeed satisfy the monotonicity condition. Therefore, the optimal contingent

measurement rule β (α) is the solution to the following optimization program

max
β(α)

W ≡
∫ θ

θ

U(θ)f(θ)dθ, (30)

s.t. U ′ (θ) = α (θ) + (1− α (θ)) β(α (θ)).

We solve program (30) by solving the following optimal control problem

max
α(θ),β(θ)

W ≡
∫ θ

θ

U(θ)f(θ)dθ, (31)

s.t. U ′ (θ) = α (θ) + (1− α (θ)) β(θ). (32)

We establish in the Appendix that programs (30) and (31) are equivalent. In other words, to

derive the optimal contingent measurement rule, we can first solve for the optimal schedules
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of measurement precision and loan retention as a function of the bank’s loan quality θ, i.e.,

{α∗ (θ) , β∗ (θ)}, although θ is not directly observable and hence the measurement rule cannot

be made contingent on θ. The optimal contingent rule βC (α) is then given by inverting the

optimal schedule of loan retention and substituting it into the optimal measurement schedule,

i.e., βC (α) = β∗ (θ∗ (α)), where θ∗ (α) is the inverse function of α∗ (θ). Solving program (31)

yields the optimal loan retention and measurement rule schedules that we formally state

next.

Proposition 4 When loan quality θ is unobservable, the optimal loan retention and mea-

surement schedules, {α∗ (θ) , βC (α)} satisfy:

1. the optimal measurement schedule is a contingent rule that sets precision βC (α) =

3α−1
1−α − 4δ hη

τ
if α > 1+4δ

hη
τ

3+4δ
hη
τ

and requires no measurement if α ≤ 1+4δ
hη
τ

3+4δ
hη
τ

;

2. if τ
2hη

< 1
c
, the equilibrium loan retention schedule α∗(θ) ∈

(
1+4δ

hη
τ

3+4δ
hη
τ

,
1+2δ

hη
τ

2
(

1+δ
hη
τ

)
)
satisfies

∂α∗ (θ)

∂θ
= H (α∗ (θ)) , (33)

and the equilibrium measurement precision βC (α∗ (θ)) > 0, where the function

H(x) ≡
c
(

1 + 2δ hη
τ
− 2x

(
1 + δ hη

τ

))
c (1− x)

(
τ
hη

+ δ
)
− 4

(
1 + δ hη

τ

)(
1 + 2δ hη

τ
− 2x

(
1 + δ hη

τ

)) ;

3. but if τ
2hη
≥ 1

c
, there exists a measurement cutoff θc ∈ [θ, θ], where θc solves αU (θc; 0) =

1+4δ
hη
τ

3+4δ
hη
τ

such that, for θ > θc, α∗(θ) ∈
(

1+4δ
hη
τ

3+4δ
hη
τ

,
1+2δ

hη
τ

2
(

1+δ
hη
τ

)
)
solves (33) and βC (α∗ (θ)) >

0, while for θ ≤ θc, α∗ (θ) = αU (θ; 0) ∈ (0,
1+4δ

hη
τ

3+4δ
hη
τ

] and βC (α∗ (θ)) = 0, i.e., no
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Figure 2: Optimal contingent measurement precision βC (α) as a function of loan retention
fraction α. The following parameter values are used in this plot: δ = 0.1, c = 2, τ = 2 and
hη = 1.

measurement should be required.17

Proposition 4 states that, when banks have private information about the quality of their

loan portfolios, the optimal measurement rule for loan transfers should be made contingent

on the amount of loans transferred. In particular, banks should measure their loan portfolios

if and only if they retain a suffi ciently large proportion of those loans and the precision of

such measurement should increase in the proportion of loan retention. Figure 2 provides a

graphic illustration of the optimal contingent measurement rule. The intuition for Proposi-

tion 4 follows from the impact of measurement on the over-retention ineffi ciency discussed

in Proposition 3. Recall that measurement can worsen the over-retention ineffi ciency if the

bank has transferred most of its loans (i.e., whenever α is small). Accordingly, the optimal

17Recall that the expression of αU (θ; 0) is as given in Proposition 2.
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rule should require no measurement under those circumstances.

We now relate the implications of Proposition 4 to current accounting standards on asset

transfers. As discussed previously, the central issue at debate is whether and when transferred

assets should be recognized on the balance sheet (i.e., treated as collateralized borrowing)

or derecognized (i.e., treated as a sale). Under current standards, the key guiding principle

for derecognition is whether the transferor has surrendered control. To the extent that

derecognition implies less measurement or even no measurement of the performance of the

loans, the contingent measurement rule derived in Proposition 4 provides conditions under

which derecognition is desirable. In this light, Proposition 4 states that no measurement

should be allowed when the bank has transferred most of the loans. Moreover, to the extent

that the degree of control is negatively associated with the fraction of assets transferred,

Proposition 4 lends some support for adopting the control principle in the current accounting

standards.

Furthermore, because the contingent measurement rule depends on the bank’s asset trans-

fer decision, the exogenous parameters that drive the bank’s equilibrium choice of asset trans-

fer provides some insights into environments when measurement is more likely to be useful.

In particular, when monitoring considerations are more important relative to risk-sharing

considerations (i.e., τ
2hη

< 1
c
), measurement always occurs in order to provide effi cient moni-

toring incentives. But when risk-sharing considerations become suffi ciently more important

(i.e., τ
2hη
≥ 1

c
), Proposition 4 suggests that there exists a measurement cutoff θc on the bank’s

loan quality below which measurement never occurs.

Our contingent measurement rule implies that the one-size-fits-all risk retention require-

ment of the Dodd-Frank Act may be suboptimal. The Dodd-Frank Act requires securitization
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sponsors to retain no less than a 5% share of the aggregate credit risk of the assets they

securitize. But as discussed above, optimal risk retention level depend on the exogenous pa-

rameters that determine a bank’s monitoring considerations vs. risk sharing considerations

and those parameters are likely to vary across banks. More importantly, the optimal risk

retention level depends on a bank’s information environment that is also likely to vary across

banks.

Interestingly, the equilibrium measurement schedule βC (α) resembles the threshold dis-

closure strategy derived in the voluntary disclosure literature in the sense that disclosure

occurs only upon good news (i.e., when the loan quality θ is suffi ciently good); yet, the

mechanisms under which the two equilibria are sustained are completely different. In our

model, the measurement cutoff arises due to the optimal design of the ex-ante mandatory

measurement rule, whereas, in the voluntary disclosure literature, the disclosure threshold

prevails as a consequence of firms’own ex-post voluntary disclosure choice. To generate ad-

ditional implications, we next provide some comparative statics on the equilibrium retention

fraction α∗(θ), the equilibrium measurement cutoff θc, and the equilibrium measurement

precision β∗(θ) ≡ βC (α∗(θ)) when asset transfers are measured.

Corollary 2 The comparative statics of the equilibrium retention fraction α∗(θ), the equilib-

rium measurement precision β∗(θ), and the equilibrium measurement cutoff θc are as follows:

1. both α∗(θ) and β∗(θ) are strictly increasing in the loan quality θ and the liquidity

discount δ, and strictly decreasing in the degree of risk aversion τ , the monitoring cost

c, and the residual variance of loan cash flows 1
hη
;

2. if τ
2hη
≥ 1

c
, θc is strictly decreasing in the liquidity discount δ, and strictly increasing in
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the degree of risk aversion τ , the monitoring cost c, and the residual variance of loan

cash flows 1
hη
.

Corollary 2 is mostly intuitive given the preceding discussion. Under the optimal measure-

ment rule, measurement is less likely to occur and the measurement precision is lower when

risk-sharing considerations overwhelm monitoring considerations—when the bank is more risk

averse, loan cash flows are more volatile, and/or it is more costly to induce monitoring.

However, Corollary 2 also carries a key implication regarding how the (il)liquidity of the

secondary loan sale market δ should affect the benefit of measurement. To better appreciate

this implication, recall that, absent the private information about loan quality θ, the optimal

measurement precision β0 is independent of the liquidity effect δ (Proposition 1). In contrast,

Corollary 2 suggests that when there is private information and the liquidity of the loan

sale market deteriorates (i.e., δ increases), more measurement is warranted in the sense

that, under the optimal measurement rule, measurement is more likely to occur and upon

measurement, the precision is higher. The intuition for this result is as follows. In a less

liquid market, the bank has weaker incentives to transfer loans due to the liquidity cost and

hence chooses to retain more loans. Furthermore, the optimal measurement rule requires that

more measurement should be required when the bank retains more loans. Stated differently,

that lower market liquidity calls for more measurement and greater transparency is a direct

consequence of the optimal contingent measurement rule.

Proposition 4 also sheds light on how the contingent measurement rule affects the bank’s

loan retention schedule. It suggests that, interestingly, the measurement rule results in a

“kink” point in the loan retention schedule. When the loan quality θ is lower than the
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Figure 3: Equilibrium loan retention schedule α∗ (θ) under optimal measurement rule as a
function of loan quality θ. The following parameter values are used in this plot: δ = 0.1,
c = 2, τ = 2 and hη = 1.

measurement cutoff θc, the loan retention schedule under the contingent measurement rule

overlaps with that under no-measurement. However, the loan retention schedule becomes

less steep and falls below the schedule under no-measurement, as the retention amount passes

the cutoff that triggers measurement (i.e., θ > θc). We summarize this result in the following

corollary.

Corollary 3 The comparison between the loan retention fraction under the optimal contin-

gent measurement rule α∗ (θ) and that under no-measurement αU (θ; 0) is as follows:

1. if τ
2hη

< 1
c
, α∗ (θ) < αU (θ; 0) for all θ;

2. if τ
2hη
≥ 1

c
, α∗ (θ) = αU (θ; 0) if θ ≤ θc, whereas α∗ (θ) < αU (θ; 0) if θ > θc.

Figure 3 provides a graphic illustration of Corollary 3 in the case of τ
2hη
≥ 1

c
. Intuitively,

when the loan quality is unobservable, the bank over-retains loans and retains even more

when the loans are of higher quality. As the loan quality improves above some level, the
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bank retains a suffi cient amount of loans that triggers measurement. The measurement, in

turn, curbs the bank’s over-retention motive, shifts the retention amount downward, and

thus results in a kink in the equilibrium loan retention schedule.

Finally, Proposition 4 generates insights into the real effects of asset transfer measurement

rule and describes how the measurement rule affects the bank’s monitoring incentives, which

determines the performance of the bank’s loan portfolio. We find that the optimal contingent

measurement rule results in higher monitoring effort and thus improves the loan performance,

relative to no measurement. We summarize this result in the following corollary.

Corollary 4 The comparison between the monitoring effort under the optimal contingent

measurement rulem (θ) ≡ m∗ (α∗ (θ)) and that under no-measurementmU (θ) ≡ m∗ (αU (θ; 0))

is as follows:

1. if τ
2hη

< 1
c
, m (θ) > mU (θ) for all θ;

2. if τ
2hη
≥ 1

c
, m (θ) = mU (θ) if θ ≤ θc, whereas m (θ) > mU (θ) if θ > θc.

Figure 4 provides a graphic illustration of Corollary 4 in the case of τ
2hη
≥ 1

c
. It suggests

that the optimal measurement rule plays a beneficial role in mitigating the problem of banks’

reduced monitoring incentives after loan transfers. As previously explained, measurement

substitutes for loan retention in incentivizing the bank to monitor, which helps to maintain

an adequate level of monitoring effort even after the bank off-loads some of its loans.
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Figure 4: Equilibrium monitoring effort under optimal measurement rule, m (θ) ≡
m∗ (α∗ (θ)), as a function of loan quality θ. The following parameter values are used in
this plot: δ = 0.1, c = 2, τ = 2 and hη = 1.

4 Conclusion

We develop a model of a representative bank to study the trade-offs that banks face in

engaging in asset transfers. Given those trade-offs, we study how ex-ante measurement rules

affect asset transfer policies. Our main result is that, in the presence of monitoring and

informational frictions, a contingent measurement rule is optimal: banks should report the

performance of transferred loans if and only if the amount of loans retained is suffi ciently

high.

To focus exclusively on measurement rules, we study the simplest form of credit risk

transfer in which banks sell their loans proportionally without recourse in a secondary market.

To the extent that the degree of control is negatively associated with the fraction of assets

transferred, our contingent measurement rule lends some support for adopting the control

principle in determining the appropriate accounting treatment for transfers. We believe that

to model control issues, one needs to incorporate richer institutional features of asset transfers
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such as securitization that our model does not capture. Future research may expand our

framework of asset transfer and measurement to incorporate such features and examine how

they interact with measurement rules.

Finally, we do not model regulatory capital that plays an important role in affecting

banks’incentives to engage in asset transfers. As we have shown in prior work, accounting

measurements play a crucial role in the design of regulatory capital (Mahieux, Sapra, and

Zhang, 2021). It would therefore be useful to investigate how such measurements inter-

act with regulatory capital to affect loan transfer decisions. We leave this important and

interesting issue to future research.
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Appendix: proofs

Proof. of Lemma 1: See the main text.

Proof. of Proposition 1: Substituting the equilibrium monitoring effort in (10) into (13)

and (14) yields:

1− β
c

=
τ

2hη
, (34)

(1− α) (1− β)2

c
+ 2δ(1− α) =

τ [α− (1− α)β]

hη
. (35)

If τ
2hη

< 1
c
, (34) gives β0 = 1− cτ

2hη
> 0. Solving (35) gives:

α0 (β) =
((1− β)2 + 2cδ)hη + βcτ

((1− β)2 + 2cδ)hη + (1 + β)cτ
. (36)

Substituting β0 into (36) gives α0 =
8δh2η+4hητ−cτ2
8δh2η+τ(8hη−cτ)

. If τ
2hη
≥ 1

c
, the left-hand side of (34) is

always smaller than the right-hand side, i.e.,

1− β
c
≤ 1

c
≤ τ

2hη
.

Therefore, β0 = 0. Substituting β0 = 0 into (36) gives α0 = (1+2cδ)hη
(1+2cδ)hη+cτ

.

Proof. of Proposition 2: In equilibrium, since θ̂ (α) = θ, replacing θ̂ with θ in (18) yields
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the bank’s equilibrium payoff for a given θ:

U (θ) ≡ U (m∗ (α (θ)) , α (θ) ; θ)

= θ +
α (θ) + (1− α (θ)) β

c
− [α (θ) + (1− α (θ)) β]2

2c

− τ

2

(
α (θ)2 + (1− α (θ))2 β

hη

)
− δ (1− α (θ))2 . (37)

Consider a deviation in which the bank chooses a different retention fraction α (θ′) rather

than α (θ). Without loss of generality, let θ′ > θ. The bank’s payoff is then given by:

U (θ′; θ) ≡ U (m∗ (α (θ′)) , α (θ′) ; θ) (38)

= [α (θ′) + (1− α (θ′)) β] θ + (1− α (θ′)) (1− β) θ′

+ (α(θ′) + (1− α(θ′)))
α (θ′) + (1− α (θ′)) β

c
− [α (θ′) + (1− α (θ′)) β]

2

2c

− τ

2

(
α (θ′)

2
+ (1− α (θ′))

2
β

hη

)
− δ (1− α (θ′))

2
.

The incentive-compatible (IC) constraint requires that

U (θ) ≥ U (θ′; θ) , (39)

which can be simplified into

U (θ′)− U (θ) ≤ [α (θ′) + (1− α (θ′)) β] (θ′ − θ) . (40)
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Analogously, the IC for the bank with θ′ requires that

U (θ′) ≥ U (θ; θ′) , (41)

which can be simplified into

U (θ′)− U (θ) ≥ [α (θ) + (1− α (θ)) β] (θ′ − θ) . (42)

Combining (40) and (42) yields:

[α (θ) + (1− α (θ)) β] (θ′ − θ) ≤ U (θ′)− U (θ) ≤ [α (θ′) + (1− α (θ′)) β] (θ′ − θ) . (43)

Taking the limit of θ′ → θ gives:

U ′ (θ) = α (θ) + (1− α (θ)) β. (44)

As similarly shown in Lemma 2, (44) and a monotonicity condition that α (θ) is strictly

increasing in θ are suffi cient and necessary for the IC constraints. We next ignore the

monotonicity condition and derive the optimal retention schedule α (θ). Later we verify the

equilibrium α (θ) indeed satisfies the monotonicity condition.

Differentiating U(θ) in (37) with respect to θ and substituting into (44) gives:

∂α (θ)

∂θ
=

(α (θ)− 1)(1− β)
1−α(θ)

c
(1− β)2 + 2δ(1− α(θ))− τ(α(θ)−(1−α(θ))β)

hη

. (45)
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The initial condition for (45) is given by type θ bank’s choice. Type θ bank chooses α to

maximize U (θ) in (37) and taking the first-order condition gives:

αU(θ; β) =
((1− β)2 + 2cδ)hη + βcτ

((1− β)2 + 2cδ)hη + (1 + β)cτ
. (46)

Solving the differential equation yields

αU(θ; β) = 1 +
cτ

((1− β)2 + 2cδ)hη + (1 + β)cτ
w

[
−e−

(
1+

(1−β)hη(θ−θ)
τ

)]
, (47)

where w(.) is the Lambert W function (i.e., the principal solution for y in x = yey). This

proves part 1 of the proposition.

Note that, by observing the expression of αU(θ; β), it is strictly increasing in θ. This also

verifies the monotonicity requirement of the IC constraints. In addition, recall that αU(θ, β)

is defined such that

∂αU(θ, β)

∂θ
=

(1− αU(θ, β))(1− β)
τ
hη

(αU(θ, β)− (1− αU(θ, 0))β)− 2δ(1− αU(θ, β))− 1
c
(1− αU(θ, β))(1− β)2

.

(48)

It is straightforward to verify that, for αU(θ, β) ∈
[

((1−β)2+2cδ)hη+βcτ

((1−β)2+2cδ)hη+(1+β)cτ
, 1
]
, the right-hand

side of (48) is decreasing in τ and c, and increasing in hη and δ. Similarly, the expression

((1−β)2+2cδ)hη+βcτ

((1−β)2+2cδ)hη+(1+β)cτ
is decreasing in τ and c, and increasing in hη and δ. As a result, the

function αU(θ, β) is decreasing in τ and c, and increasing in hη and δ. This proves part 2 of

the proposition.
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Proof. of Corollary 1: Note that

αU(θ; 0)− α0 ≥ αU(θ; 0)− αU(θ; 0) =

∫ θ

θ

∂αU(t; 0)

∂t
dt ≥ 0. (49)

The first inequality uses that, from (46), αU(θ; 0) = (1+2cδ)hη
(1+2cδ)hη+cτ

, which equals α0 if τ
2hη
≥ 1

c
.

If τ
2hη

< 1
c
, α0 =

8δh2η+4hητ−cτ2
8δh2η+τ(8hη−cτ)

< (1+2cδ)hη
(1+2cδ)hη+cτ

= αU(θ; 0). The last inequality is strict if θ > θ,

and it holds because ∂αU (t;0)
∂t

> 0 for any t > θ (Part 2 of Proposition 2).

Proof. of Proposition 3: Note that since α0 is independent of β,
∂(αU (θ;β)−α0)

∂β
= ∂αU (θ;β)

∂β
.

Taking the derivative of (47) with respect to β at β = 0 gives:

∂αU(θ; β)

∂β

∣∣∣∣
β=0

=

cw

(
−e−

(
1+

hη(θ−θ)
τ

))
(hη(1 + 2cδ) + cτ)2

τ(2hη − cτ) +
hη(hη(1 + 2cδ) + cτ)(θ − θ)

1 + w

(
−e−

(
1+

hη(θ−θ)
τ

))
 .

(50)

Note that since−e−
(

1+
hη(θ−θ)

τ

)
∈ [−1

e
, 0), the value of the LambertW functionw

(
−e−

(
1+

hη(θ−θ)
τ

))
∈

[−1, 0), i.e.,

−1 ≡ w

(
−1

e

)
≤ w

(
−e−

(
1+

hη(θ−θ)
τ

))
< w (0) ≡ 0. (51)

Therefore, ∂αU (θ;β)
∂β

∣∣∣
β=0

has the same sign as the following expression:

τ(cτ − 2hη)−
hη(hη(1 + 2cδ) + cτ)(θ − θ)

1 + w

(
−e−

(
1+

hη(θ−θ)
τ

)) . (52)

If τ
2hη

< 1
c
, (52) is always negative because both its first term and second term are

negative. The latter is true because θ ≥ θ and w

(
−e−

(
1+

hη(θ−θ)
τ

))
≥ −1. Therefore,

∂αU (θ;β)
∂β

∣∣∣
β=0

< 0. This proves part 1 of the proposition.
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If τ
2hη
≥ 1

c
, the first term of (52) is positive while the second term is negative. As a result,

the sign of (52) can be ambiguous. Consider a limiting case of θ → θ:

lim
θ→θ

τ(cτ − 2hη)−
hη(hη(1 + 2cδ) + cτ)(θ − θ)

1 + w

(
−e−

(
1+

hη(θ−θ)
τ

)) (53)

= τ(cτ − 2hη)− lim
θ→θ

hη(hη(1 + 2cδ) + cτ)(θ − θ)

1 + w

(
−e−

(
1+

hη(θ−θ)
τ

))

= τ(cτ − 2hη)− lim
θ→θ

hη(hη(1 + 2cδ) + cτ)

−e−(1+
hη(θ−θ)

τ

)
+ e

w

(
−e
−
(
1+

hη(θ−θ)
τ

))
e
−
(

1+
hη(θ−θ)

τ

)
hη
τ

= τ(cτ − 2hη)

≥ 0.

The second step uses the L’Hospital’s Rule. The third step uses that

lim
θ→θ
−e−

(
1+

hη(θ−θ)
τ

)
+ e

w

(
−e
−
(
1+

hη(θ−θ)
τ

))
= −1

e
+

1

e
= 0, (54)

where the second equality uses that w
(
−1
e

)
≡ −1. By continuity, ∂αU (θ;β)

∂β

∣∣∣
β=0

> 0 if θ is

suffi ciently low. Recall that from Proposition 2, αU(θ; 0) is strictly increasing in θ. Hence the

condition that θ is suffi ciently low is equivalent to the condition that αU (θ; 0) is suffi ciently

low. This proves part 2 of the proposition.

Proof. of Lemma 2: We have proved the part of necessity in the main text of the paper.

To prove suffi ciency, we show that any retention schedule that satisfies conditions (1) and
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(2) must be incentive compatible. Consider θ′ > θ. From condition (1),

∫ θ′

θ

U ′ (t) dt =

∫ θ′

θ

[α (t) + (1− α (t)) β (α (t))] dt, (55)

and from condition (2),

∫ θ′

θ

[α (t) + (1− α (t)) β (α (t))] dt ≤
∫ θ′

θ

[α (θ′) + (1− α (θ′)) β (α (θ′))] dt. (56)

Therefore,

∫ θ′

θ

U ′ (t) dt = U (θ′)− U (θ) ≤ [α (θ′) + (1− α (θ′)) β (α (θ′))] (θ′ − θ) . (57)

This proves that conditions (1) and (2) yield incentive compatibility.

Proof. of Proposition 4: We first prove that the solutions {α∗ (θ) , β∗ (θ)} to program (31)

also solve program (30). Note first that α∗ (θ) and β∗ (θ∗ (α)) also satisfy the IC constraint

in program (30). This is because,

U ′ (θ) = α∗ (θ) + (1− α∗ (θ)) β∗ (θ) = α∗ (θ) + (1− α∗ (θ)) β∗ (θ∗ (α∗ (θ))) . (58)

The first equality uses the IC constraint in program (31) and the second equality uses

θ∗ (α∗ (θ)) = θ. Next, we prove that given α∗ (θ), the optimal choice of β∗ (θ∗ (α)) also

maximizes the objective in program (30). Assume by contradiction, that there exists some

{α′ (θ) , β′ (α)} that produces higher surplus than {α∗ (θ) , β∗ (θ∗ (α))} and satisfies the IC

constraint in program (30). Define β′ (θ) ≡ β′ (α (θ)). As proved previously, {α′ (θ) , β′ (θ)}
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also satisfy the IC constraint in program (31). Note that {α′ (θ) , β′ (θ)} would achieve the

same amount of surplus as {α′ (θ) , β′ (α)} because at every θ, β′ (θ) = β′ (α (θ)) . In addition,

{α∗ (θ) , β∗ (θ)} would achieve the same amount of surplus as {α∗ (θ) , β∗ (θ∗ (α))} because at

every θ, β∗ (θ∗ (α)) = β∗ (θ), where the equality uses θ∗ (α∗ (θ)) = θ. Note that this implies

a contradiction because at {α′ (θ) , β′ (θ)}, the surplus is lower than that at {α∗ (θ) , β∗ (θ)},

whereas at {α′ (θ) , β′ (α)}, the surplus is higher than that at {α∗ (θ) , β∗ (θ∗ (α))}.

Second, we solve for α∗ (θ) and β∗ (θ). To economize on notation, we often omit the

superscript “∗” in the remaining proof of Proposition 4 whenever no confusion arises. At

t = 0, the bank chooses simultaneously both the retention fraction α and the disclosure

precision β. Differentiating the Hamiltonian with respect to α(θ) and β(θ), respectively,

yields:

[
1− α (θ)

c
(1− β (θ))2 + 2δ (1− α (θ))− τ [α (θ)− (1− α (θ))β (θ)]

hη

]
f(θ) (59)

= L (θ) (1− β(θ)),

(1− α(θ))2

[
1− β (θ)

c
− τ

2hη

]
f(θ) (60)

= L (θ) (1− α(θ)).

Dividing (59) by (60) gives:

β(θ) =
3α(θ)− 1

1− α(θ)
− 4δ

hη
τ
, (61)

if α (θ) ∈
(

1+4δ
hη
τ

3+4δ
hη
τ

,
1+2δ

hη
τ

2
(

1+δ
hη
τ

)
)
. If α (θ) ≤ 1+4δ

hη
τ

3+4δ
hη
τ

, β (θ) = 0 and if α (θ) ≥ 1+2δ
hη
τ

2
(

1+δ
hη
τ

) , β (θ) = 1.

As we will verify later, the bank in equilibrium always sets α (θ) <
1+2δ

hη
τ

2
(

1+δ
hη
τ

) so the last case
never prevails in equilibrium. This proves part 1 of the proposition.
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Next we derive the equilibrium loan retention schedule α(θ). Consider the first case that

τ
2hη

< 1
c
. At θ = θ, the bank does not distort its choice, i.e., β (θ) = β0 = 1− cτ

2hη
and α(θ) =

8δh2η+4hητ−cτ2
8δh2η+τ(8hη−cτ)

∈
(

1+4δ
hη
τ

3+4δ
hη
τ

,
1+2δ

hη
τ

2
(

1+δ
hη
τ

)
)
. Suppose that for θ > θ, α (θ) ∈

(
1+4δ

hη
τ

3+4δ
hη
τ

,
1+2δ

hη
τ

2
(

1+δ
hη
τ

)
)

and we will verify this conjecture after solving the equilibrium. Substituting the expression

(23) of U (θ) and β(θ) = 3α(θ)−1
1−α(θ)

− 4δ hη
τ
into the IC constraint (32) gives

α′ (θ) = H (α (θ)) , (62)

where

H (x) =
c
(

1 + 2δ hη
τ
− 2x

(
1 + δ hη

τ

))
c (1− x)

(
τ
hη

+ δ
)
− 4

(
1 + δ hη

τ

)(
1 + 2δ hη

τ
− 2x

(
1 + δ hη

τ

)) . (63)

Note that the numerator of H (x) is positive if and only if x < 1+2δ
hη
τ

2
(

1+δ
hη
τ

) . The sign of the
denominator is as follows. If τ

hη
<

8
(

1+δ
hη
τ

)2
c

− δ, the denominator of H (x) is positive if and

only if x >
4
(

1+δ
hη
τ

)(
1+2δ

hη
τ

)
−c
(
δ+ τ

hη

)
8
(

1+δ
hη
τ

)2
−c
(
δ+ τ

hη

) . If τ
hη
≥

8
(

1+δ
hη
τ

)2
c

− δ, the denominator of H (x) is

positive for any x ∈ [0, 1].

We now prove that α (θ) ∈
(

1+4δ
hη
τ

3+4δ
hη
τ

,
1+2δ

hη
τ

2
(

1+δ
hη
τ

)
)
. First, consider the case that τ

2hη
< 1

c
. At

the initial point of α (θ) =
8δh2η+4hητ−cτ2
8δh2η+τ(8hη−cτ)

∈
(

1+2cδ
3+2cδ

,
1+2δ

hη
τ

2
(

1+δ
hη
τ

)
)
, α′ (θ) = H (α(θ)) > 0. The

schedule α (θ) thus increases. As long as α (θ) is below 1+2δ
hη
τ

2
(

1+δ
hη
τ

) and above 8δh2η+4hητ−cτ2
8δh2η+τ(8hη−cτ)

,

H (α (θ)) > 0 and α (θ) keeps rising. However, α (θ) can never go above 1+2δ
hη
τ

2
(

1+δ
hη
τ

) , because if
α (θ) =

1+2δ
hη
τ

2
(

1+δ
hη
τ

) , α′ (θ) = H

(
1+2δ

hη
τ

2
(

1+δ
hη
τ

)
)

= 0 and α (θ) will remain at 1+2δ
hη
τ

2
(

1+δ
hη
τ

) . Therefore,
α (θ) <

1+2δ
hη
τ

2
(

1+δ
hη
τ

) . In addition, α (θ) ≥ α(θ) =
8δh2η+4hητ−cτ2
8δh2η+τ(8hη−cτ)

>
1+4δ

hη
τ

3+4δ
hη
τ

. This proves that

α (θ) ∈
(

1+4δ
hη
τ

3+4δ
hη
τ

,
1+2δ

hη
τ

2
(

1+δ
hη
τ

)
)
.

Second, consider the case that τ
2hη
≥ 1

c
. At θ = θ, the bank does not distort its choice, i.e.,
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β (θ) = β0 = 0 and α(θ) = (1+2cδ)hη
(1+2cδ)hη+cτ

∈
(

0,
1+4δ

hη
τ

3+4δ
hη
τ

)
. By continuity, there exists a cutoff

θc such that for θ < θc, α (θ) <
1+4δ

hη
τ

3+4δ
hη
τ

and β (θ) = 0. Under θ < θc, plugging β (θ) = 0 into

the maximization problem gives

α′ (θ) = G (α (θ)) , (64)

where

G (x) ≡ c (1− x)

x
(

1 + cτ
hη

)
− 1− 2cδ(1− x)

. (65)

Note that upon β = 0, α (θ) ≡ αU (θ; 0). In addition, G (x) > 0 if and only if x > α(θ) =

(1+2cδ)hη
(1+2cδ)hη+cτ

. Now consider the dynamics regarding α (θ) for θ < θc. At the initial point of

α(θ) = (1+2cδ)hη
(1+2cδ)hη+cτ

, α′ (θ) = G (α(θ)) > 0. The schedule α (θ) thus increases. As long as

α (θ) < 1, α′ (θ) = G (α (θ)) > 0 and the schedule α (θ) keeps increasing towards 1. By the

intermediate value theorem, there exists a unique cutoff θc such that α (θc) =
1+4δ

hη
τ

3+4δ
hη
τ

. This

proves that for θ ≤ θc, α (θ) ≤ 1+4δ
hη
τ

3+4δ
hη
τ

.

Next, consider the case that θ > θc. Suppose that for θ > θc, α (θ) ∈
(

1+4δ
hη
τ

3+4δ
hη
τ

,
1+2δ

hη
τ

2
(

1+δ
hη
τ

)
)

and we will verify this conjecture after solving the equilibrium. Under this conjecture, β(θ) =

3α(θ)−1
1−α(θ)

− 4δ hη
τ
, and thus α′ (θ) = H (α (θ)). Note that the numerator of H (x) is positive if

and only if x < 1+2δ
hη
τ

2
(

1+δ
hη
τ

) . However, under τ
2hη
≥ 1

c
, the sign of H (x)’s denominator may be

different from that under τ
2hη

< 1
c
. More specifically, if τ

hη
<

8
(

1+δ
hη
τ

)2
c

−δ, H (x) is positive if

and only if x ∈
(

4
(

1+δ
hη
τ

)(
1+2δ

hη
τ

)
−c
(
δ+ τ

hη

)
8
(

1+δ
hη
τ

)2
−c
(
δ+ τ

hη

) ,
1+2δ

hη
τ

2
(

1+δ
hη
τ

)
)
, whereas if τ

hη
≥

8
(

1+δ
hη
τ

)2
c

− δ, H (x)

is positive if and only if x < 1+2δ
hη
τ

2
(

1+δ
hη
τ

) . We thus discuss the cases of τ
hη
<

8
(

1+δ
hη
τ

)2
c

− δ and

τ
hη
≥

8
(

1+δ
hη
τ

)2
c

− δ separately.

Consider first the dynamics regarding α (θ) if τ
hη

<
8
(

1+δ
hη
τ

)2
c

− δ. At the initial point
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of α(θc) =
1+4δ

hη
τ

3+4δ
hη
τ

, since 1+4δ
hη
τ

3+4δ
hη
τ

≥
4
(

1+δ
hη
τ

)(
1+2δ

hη
τ

)
−c
(
δ+ τ

hη

)
8
(

1+δ
hη
τ

)2
−c
(
δ+ τ

hη

) under τ
2hη
≥ 1

c
, α′ (θc) =

H (α(θc)) = H

(
1+4δ

hη
τ

3+4δ
hη
τ

)
> 0. The schedule α (θ) thus increases. As long as α (θ) is

below 1+2δ
hη
τ

2
(

1+δ
hη
τ

) , H (α (θ)) > 0 and α (θ) keeps rising. However, α (θ) can never go above

1+2δ
hη
τ

2
(

1+δ
hη
τ

) , because if α (θ) =
1+2δ

hη
τ

2
(

1+δ
hη
τ

) , α′ (θ) = H

(
1+2δ

hη
τ

2
(

1+δ
hη
τ

)
)

= 0 and α (θ) will remain at

1+2δ
hη
τ

2
(

1+δ
hη
τ

) . Therefore, α (θ) <
1+2δ

hη
τ

2
(

1+δ
hη
τ

) . In addition, α (θ) ≥ α(θ′c) =
1+4δ

hη
τ

3+4δ
hη
τ

. This proves that

α (θ) ∈
(

1+4δ
hη
τ

3+4δ
hη
τ

,
1+2δ

hη
τ

2
(

1+δ
hη
τ

)
)
for θ > θc if τ

hη
<

8
(

1+δ
hη
τ

)2
c

− δ and τ
2hη
≥ 1

c
.

If τ
hη
≥

8
(

1+δ
hη
τ

)2
c

− δ and at the initial point of α(θ′c) =
1+4δ

hη
τ

3+4δ
hη
τ

, since α(θc) =
1+4δ

hη
τ

3+4δ
hη
τ

<

1+2δ
hη
τ

2
(

1+δ
hη
τ

) , α′ (θc) = H (α(θ′c)) = H

(
1+4δ

hη
τ

3+4δ
hη
τ

)
> 0. The schedule α (θ) thus increases. As long

as α (θ) is below 1+2δ
hη
τ

2
(

1+δ
hη
τ

) , H (α (θ)) > 0 and α (θ) keeps rising. However, α (θ) can never

go above 1+2δ
hη
τ

2
(

1+δ
hη
τ

) , because if α (θ) =
1+2δ

hη
τ

2
(

1+δ
hη
τ

) , α′ (θ) = H

(
1+2δ

hη
τ

2
(

1+δ
hη
τ

)
)

= 0 and α (θ) will

remain at 1+2δ
hη
τ

2
(

1+δ
hη
τ

) . Therefore, α (θ) <
1+2δ

hη
τ

2
(

1+δ
hη
τ

) . In addition, α (θ) ≥ α(θc) =
1+4δ

hη
τ

3+4δ
hη
τ

. This

proves that α (θ) ∈
(

1+4δ
hη
τ

3+4δ
hη
τ

,
1+2δ

hη
τ

2
(

1+δ
hη
τ

)
)
for θ > θc if τ

hη
≥

8
(

1+δ
hη
τ

)2
c

− δ and τ
2hη
≥ 1

c
.

Finally, we verify the monotonicity condition, α (θ)+(1− α (θ)) βC(α (θ)) is non-decreasing

in θ. If τ
2hη

< 1
c
, since α (θ) ∈

(
1+4δ

hη
τ

3+4δ
hη
τ

,
1+2δ

hη
τ

2
(

1+δ
hη
τ

)
)
, then βC (α (θ)) = 3α(θ)−1

1−α(θ)
− 4δ hη

τ
. This

gives

α (θ) + (1− α (θ)) βC(α (θ)) = α(θ)

(
4 + 4δ

hη
τ

)
− 1− 4δ

hη
τ
, (66)

which is non-decreasing in θ because α(θ) is non-decreasing in θ. If τ
2hη
≥ 1

c
and θ ≤ θc,

α (θ) = αU (θ; 0) ∈ (0,
1+4δ

hη
τ

3+4δ
hη
τ

] and βC(α (θ)) ≡ 0. This gives

α (θ) + (1− α (θ)) βC(α (θ)) = α (θ) , (67)

which is non-decreasing in θ because α(θ) is non-decreasing in θ. If τ
2hη
≥ 1

c
and θ > θc,
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α (θ) ∈
(

1+4δ
hη
τ

3+4δ
hη
τ

,
1+2δ

hη
τ

2
(

1+δ
hη
τ

)
)
and βC(α (θ)) = 3α(θ)−1

1−α(θ)
− 4δ hη

τ
. This gives

α (θ) + (1− α (θ)) βC(α (θ)) = α(θ)

(
4 + 4δ

hη
τ

)
− 1− 4δ

hη
τ
, (68)

which is non-decreasing in θ because α(θ) is non-decreasing in θ.

Proof. of Corollary 2: We first prove the comparative statics of α∗ (θ), as defined in ∂α∗(θ)
∂θ

=

H (α∗(θ)). One can verify that if τ
2hη

< 1
c
, the function H(x) increases in hη and δ, and

decreases in c and τ , for x ∈
[

8δh2η+4hητ−cτ2
8δh2η+τ(8hη−cτ)

,
1+2δ

hη
τ

2+2δ
hη
τ

]
; otherwise, if τ

2hη
> 1

c
, the function

H(x) increases in hη and δ, and decreases in c and τ , for x ∈
[

1+4δ
hη
τ

3+4δ
hη
τ

,
1+2δ

hη
τ

2+2δ
hη
τ

]
. In addition„

if τ
2hη

< 1
c
, the expression

8δh2η+4hητ−cτ2
8δh2η+τ(8hη−cτ)

is decreasing in τ and c, and increasing in hη and δ.

Furthermore, both 1+4δ
hη
τ

3+4δ
hη
τ

and 1+2δ
hη
τ

2+2δ
hη
τ

are decreasing in τ , and increasing in hη and δ. These

conditions jointly give that α∗(θ) is decreasing in τ and c, and increasing in hη and δ.

Next, we derive the comparative statics regarding β∗ (θ). Substituting the optimal con-

tingent rule β∗(θ) = 3α∗(θ)−1
1−α∗(θ) − 4δ hη

τ
, or, equivalently, α∗(θ) =

1+β∗(θ)+4δ
hη
τ

3+β∗(θ)+4δ
hη
τ

, into ∂α∗(θ)
∂θ

=

H (α∗(θ)) gives that:

∂β∗(θ)

∂θ
=

chη(1− β∗(θ))
(δhη + τ)(−2hη + cτ + 2hηβ

∗(θ))
× (4δhη + 3τ + τβ∗(θ))2

4τ
. (69)

Define

L(x) ≡ chη(1− x)

(δhη + τ)(−2hη + cτ + 2hηx)
× (4δhη + 3τ + τx)2

4τ
. (70)

One can verify that if 2 > cτ
hη
, the function L(x) increases in hη and δ, and decreases in c and

τ , for x ∈

3
8δh2η+4hητ−cτ

2

8δh2η+τ(8hη−cτ)
−1

1− 8δh2η+4hητ−cτ2

8δh2η+τ(8hη−cτ)

− 4δ hη
τ
, 1

; otherwise, if 2 < cτ
hη
, the function L(x) increases in hη
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and δ, and decreases in c and τ , for x ∈ [0, 1]. Similarly, the expression
3
8δh2η+4hητ−cτ

2

8δh2η+τ(8hη−cτ)
−1

1− 8δh2η+4hητ−cτ2

8δh2η+τ(8hη−cτ)

−4δ hη
τ

is decreasing in τ and c, and increasing in hη and δ. These conditions jointly give that β
∗(θ)

is decreasing in τ and c, and increasing in hη and δ.

Finally, we derive the comparative statics regarding θc when τ
2hη

> 1
c
. From the proof of

Proposition 4, when τ
2hη

> 1
c
, θc solves αU (θc; 0) =

1+4δ
hη
τ

3+4δ
hη
τ

. Substituting the expression for

αU in (47) gives that:

θc = − 1

hη

(
(τ − θhη + τ log

[
2e
− 2(hη+2cδhη+cτ)

c(4δhη+3τ)
hη + 2cδhη + cτ

c(4δhη + 3τ)

])
. (71)

Differentiating θc with respect to τ and evaluating at τ = 2hη
c
gives:

∂θc
∂τ
|
τ=

2hη
c

= 0. (72)

Furthermore, we have

∂2θc
∂τ 2

=
(3 + 2cδ)hη(−16δ(1 + 2cδ)h2

η + 4cδ(1 + 6cδ)hητ + c(9 + 14cδ)τ 2)

c(4δhη + 3τ)3(hη + 2cδhη + cτ)2
> 0. (73)

Hence, for any τ > 2hη
c
, ∂θc
∂τ

> ∂θc
∂τ
|
τ=

2hη
c

= 0. Differentiating θc with respect to c gives:

∂θc
∂c

=
τ(−2hη + cτ)

c2(4δhη + 3τ)(hη + 2cδhη + cτ)
> 0, (74)
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given that τ
2hη

> 1
c
. Differentiating θc with respect to δ gives:

∂θc
∂δ

= − 2τ(−2hη + cτ)2

c(4δhη + 3τ)2(hη + 2cδhη + cτ)
< 0. (75)

Differentiating θc with respect to hη gives:

∂θc
∂hη

=
τ

ch2
η(4δhη + 3τ)2(hη + 2cδhη + cτ)

(
16cδ2(1 + 2cδ)h3

η + 2(3 + 2cδ(7 + 16cδ))h2
ητ

+ 2c(3 + 20cδ)hητ
2 + 9c2τ 3 − 2(4δhη + 3τ)(hη + 2cδhη + cτ)2

+ c(4δhη + 3τ)2(hη + 2cδhη + cτ)(log[2(hη + 2cδhη + cτ)]− log[c(4δhη + 3τ)])

)
. (76)

∂θc
∂hη

< 0 is equivalent to

16cδ2(1+2cδ)h3
η+2(3+2cδ(7+16cδ))h2

ητ+2c(3+20cδ)hητ
2+9c2τ 3−2(4δhη+3τ)(hη+2cδhη+cτ)2

< c(4δhη + 3τ)2(hη + 2cδhη + cτ) log

[
c(4δhη + 3τ)

2(hη + 2cδhη + cτ)

]
, (77)

which is equivalent to

(−2hη + cτ)(4δ(1 + 2cδ)h2
η + 8cδhητ + 3cτ 2)

c(4δhη + 3τ)2(hη + 2cδhη + cτ)
< log

[
c(4δhη + 3τ)

2(hη + 2cδhη + cτ)

]
. (78)

We can verify that this last inequality is always satisfied when τ
2hη

> 1
c
. Thus, ∂θc

∂hη
< 0.

Proof. of Corollary 3: To economize on notation, we often omit the superscript “∗”in the

proof of Corollary 3 whenever no confusion arises. Consider first the case in which τ
2hη

< 1
c
.
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Note that under no measurement, the type θ bank chooses a non-distorted retention fraction

αU (θ; 0) = α0 =
(1 + 2cδ)hη

(1 + 2cδ)hη + cτ
. (79)

Therefore, under no measurement, αU (θ) ≥ αU (θ; 0) = (1+2cδ)hη
(1+2cδ)hη+cτ

. Obviously, for the set

of θ in which α (θ) < (1+2cδ)hη
(1+2cδ)hη+cτ

, α (θ) < αU (θ). This set is non-empty because at θ = θ,

α (θ) =
8δh2η+4hητ−cτ2
8δh2η+τ(8hη−cτ)

< (1+2cδ)hη
(1+2cδ)hη+cτ

under τ
2hη

< 1
c
. Consider now the set of θ in which α (θ) ≥

(1+2cδ)hη
(1+2cδ)hη+cτ

. Since α (θ) is non-decreasing in θ, by continuity, there exists a cutoff θΛ such

that α (θ) ≥ (1+2cδ)hη
(1+2cδ)hη+cτ

if and only if θ ≥ θΛ, where α (θΛ) = (1+2cδ)hη
(1+2cδ)hη+cτ

. Note that θΛ > θ

because α (θΛ) = (1+2cδ)hη
(1+2cδ)hη+cτ

> α (θ) =
8δh2η+4hητ−cτ2
8δh2η+τ(8hη−cτ)

; in addition, αU (θΛ; 0) > αU (θ; 0) =

(1+2cδ)hη
(1+2cδ)hη+cτ

= α (θΛ). Furthermore, one can verify that for all α ∈
[

(1+2cδ)hη
(1+2cδ)hη+cτ

, 1
]
, H(α) <

G(α). Recall also that α′(θ) = H (α(θ)) and α′U(θ; 0) = G (αU(θ; 0)). Thus, for any θ ≥ θΛ,

the slope of αU(θ; 0) is higher than the slope of α(θ). This implies that for any θ ≥ θΛ,

αU(θ; 0) > α (θ) because at the initial point of θ = θΛ, αU (θΛ; 0) > α(θΛ) and αU(θ; 0)

increases at a faster speed than α (θ). This proves part 1 of the corollary.

Next, consider that τ
2hη
≥ 1

c
. From Proposition 4, the initial condition at θ = θc is

α(θc) = αU(θc; 0) =
1+4δ

hη
τ

3+4δ
hη
τ

. Furthermore, one can verify that for all α ∈
[

1+4δ
hη
τ

3+4δ
hη
τ

,
1+2δ

hη
τ

2
(

1+δ
hη
τ

)
]
,

H(α) < G(α). This implies that for all θ > θc, α(θ) < αU(θ; 0) because at the initial point

of θ = θc, αU (θc; 0) = α(θc) and αU(θ; 0) increases at a faster speed than α (θ). In addition,

from Proposition 4, for all θ ≤ θc, α(θ) = αU(θ; 0). This proves part 2 of the corollary.

Proof. of Corollary 4: Consider first the case in which τ
2hη

< 1
c
. Note that under no
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measurement, the type θ bank chooses a monitoring effort that equals:

mU (θ) =
α0

c
=

1

c

(1 + 2cδ)hη
(1 + 2cδ)hη + cτ

, (80)

whereas under optimal measurement, the type θ bank chooses a monitoring effort that equals:

m (θ) =
α0 + (1− α0) β0

c
=

1

c

8δh2
η + 8hητ − 3cτ 2

8δh2
η + 8hητ − cτ 2

. (81)

Note that under τ
2hη

< 1
c
, m (θ) > mU (θ). For θ > θ, mU (θ) = αU (θ;0)

c
, where αU (θ; 0) solves

α′U (θ; 0) = G (αU(θ; 0)). Replacing αU (θ; 0) = cmU (θ) gives that

m′U (θ) =
1

c
G (cmU (θ)) . (82)

Similarly, for θ > θ,

m (θ) =
α (θ) + (1− α (θ)) β (θ)

c
=

4
(

1 + δ hη
τ

)
α (θ)− 1− 4δ hη

τ

c
. (83)

The last equality uses that β (θ) = 3α(θ)−1
1−α(θ)

− 4δ hη
τ
. Note that m (θ) is non-decreasing in

θ since α (θ) is non-decreasing. Therefore, m (θ) > m (θ) = 1
c

8δh2η+8hητ−3cτ2

8δh2η+8hητ−cτ2 . Replacing

α (θ) =
cm(θ)+

(
1+4δ

hη
τ

)
4
(

1+δ
hη
τ

) gives that

m′ (θ) =
4
(

1 + δ hη
τ

)
c

H

cm (θ) +
(

1 + 4δ hη
τ

)
4
(

1 + δ hη
τ

)
 . (84)
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Furthermore, one can verify that for allm ∈
[

1
c

8δh2η+8hητ−3cτ2

8δh2η+8hητ−cτ2 ,
1
c

]
,

4
(

1+δ
hη
τ

)
c

H

(
cm(θ)+

(
1+4δ

hη
τ

)
4
(

1+δ
hη
τ

)
)
>

1
c
G (cmU (θ)). This implies that for all θ,m (θ) > mU (θ) because at the initial point of θ = θ,

m (θ) > mU (θ) and m(θ) increases at a faster speed than mU (θ). This proves part 1 of the

corollary.

Next, consider that τ
2hη
≥ 1

c
. From Proposition 4, the initial condition at θ = θc is

α(θc) = αU(θc; 0) =
1+4δ

hη
τ

3+4δ
hη
τ

and β (θc) = 0. Thus at θ = θc, mU (θc) = m (θc) = 1
c

1+4δ
hη
τ

3+4δ
hη
τ

. Fur-

thermore, one can verify that that for all m ∈
[

1
c

1+4δ
hη
τ

3+4δ
hη
τ

, 1
c

]
,

4
(

1+δ
hη
τ

)
c

H

(
cm(θ)+

(
1+4δ

hη
τ

)
4
(

1+δ
hη
τ

)
)
>

1
c
G (cmU (θ)). This implies that for all θ > θc, m (θ) > mU (θ) because at the initial point

of θ = θc, m (θc) = mU (θc) and m(θ) increases at a faster speed than mU (θ). In ad-

dition, from Proposition 4, for all θ ≤ θc, α(θ) = αU(θ; 0) and β (θ) = 0. Therefore,

mU (θ) = m (θ) = αU (θ;0)
c

. This proves part 2 of the corollary.
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